A modified data normalization method for GC-MS-based metabolomics to minimize batch variation

نویسندگان

  • Mingjie Chen
  • R Shyama Prasad Rao
  • Yiming Zhang
  • Cathy Xiaoyan Zhong
  • Jay J Thelen
چکیده

The goal of metabolomics data pre-processing is to eliminate systematic variation, such that biologically-related metabolite signatures are detected by statistical pattern recognition. Although several methods have been developed to tackle the issue of batch-to-batch variation, each method has its advantages and disadvantages. In this study, we used a reference sample as a normalization standard for test samples within the same batch, and each metabolite value is expressed as a ratio relative to its counterpart in the reference sample. We then applied this approach to a large multi-batch data set to facilitate intra- and inter-batch data integration. Our results demonstrate that normalization to a single reference standard has the potential to minimize batch-to-batch data variation across a large, multi-batch data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RRmix: A method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards

With the surge of interest in metabolism and the appreciation of its diverse roles in numerous biomedical contexts, the number of metabolomics studies using liquid chromatography coupled to mass spectrometry (LC-MS) approaches has increased dramatically in recent years. However, variation that occurs independently of biological signal and noise (i.e. batch effects) in metabolomics data can be s...

متن کامل

Normalization of qPCR array data: a novel method based on procrustes superimposition

MicroRNAs (miRNAs) are short, endogenous non-coding RNAs that function as guide molecules to regulate transcription of their target messenger RNAs. Several methods including low-density qPCR arrays are being increasingly used to profile the expression of these molecules in a variety of different biological conditions. Reliable analysis of expression profiles demands removal of technical variati...

متن کامل

MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics

MOTIVATION Due to the high complexity of metabolome, the comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) is considered as a powerful analytical platform for metabolomics study. However, the applications of GC×GC-TOF MS in metabolomics are not popular owing to the lack of bioinformatics system for data analysis. RESULTS We developed a computational platform ...

متن کامل

Metabolomics Data Normalization with EigenMS

Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminant...

متن کامل

Performance Evaluation and Online Realization of Data-driven Normalization Methods Used in LC/MS based Untargeted Metabolomics Analysis

In untargeted metabolomics analysis, several factors (e.g., unwanted experimental &biological variations and technical errors) may hamper the identification of differential metabolic features, which requires the data-driven normalization approaches before feature selection. So far, ≥16 normalization methods have been widely applied for processing the LC/MS based metabolomics data. However, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014